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Breaking of resonantly excited electron plasma waves
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Simulations of high-amplitude electron plasma waves have been performed by solving the Vlasov
equation numerically to clarify the mechanism of wave breaking in smooth density profiles. We show
that wave breaking exists as a phenomenon which is distinct from incoherent hot-electron generation
and which has a clear meaning in a kinetic theory: By trapping of entire bunches of electrons in the wave
potential the latter is heavily disturbed and becomes irregular. In contrast to hot-electron generation
these electron bunches are not accelerated to high velocities. An analytic criterion for wave breaking is
derived which is consistent with the numerical simulations.

PACS number(s): 52.35.Mw, 52.40.Nk, 52.65.+z

I. INTRODUCTION

The excitation of large-amplitude electron plasma
waves has attracted great and continuous attention since
1959, when it was shown that cold plasma oscillations
break when the oscillatory velocity v, equals their phase
speed v,=w/k [1]. Later on, with the help of a water-
bag model this criterion was extended to warm-electron
plasma waves and it was found that the electron density
n, of a free harmonic wave in a homogeneous plasma of
density n is limited by the inequality n, /n, < (v, /s, )2,
s, indicating the electron sound speed in the water-bag
model. This is an equivalent formulation of the so-called
Coffey criterion [2]. It is a straightforward procedure to
extend it to a warm Maxwellian plasma of electron tem-
perature T, and adiabatic coefficient ¥, where it reads [3]
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Neglecting heat conduction, for Langmuir waves y =3
holds and the inequality becomes formally identical with
Coffey’s criterion. Owing to this similarity the inequality
for a thermal plasma is usually also given the name
Coffey criterion or Coffey limit. When approaching this
limit, the electrostatic potential of the wave and its
enthalpy are growing so rapidly that a single-electron
fluid element begins to be reflected from the periodic po-
tential and ‘“hydrodynamic wave breaking” sets in [4].
The possibility of resonant excitation of intense Lang-
muir waves by high power lasers in inhomogeneous plas-
mas (resonance absorption [5]) greatly stimulated the
search for nonlinear wave phenomena and concomitant
kinetic effects. On one hand, criteria for hydrodynamic
wave breaking in the resonance region were derived for
the cold plasma at rest [6] and flowing at constant speed
vy [7]. The latter one reads with vd=eﬁd/meco (E,:
driving field amplitude) as follows:
-1
Pa S\ 1 T iR (772, —ig _
o2 gt [ e%ag| =036. @

47

Breaking in the resonance region has to be distinguished
from breaking out of resonance [3]: at resonance break-
ing is due to overlapping of two originally distinct
volume elements owing to their different phase shifts in
the neighborhood of the resonance point. Due to such
shifts a Langmuir wave in a cold (streaming) plasma may
break, in contrast to the criterion of Ref. [1], as soon as
Vos >0.75v, holds. Here, in the resonance zone, the
phase velocity is defined as v, =A/(27/w) (A is the reso-
nance width). Outside the narrow resonance region the
Langmuir wave becomes free and, in moderately steep
density gradients, the Coffey criterion in the form of Eq.
(1) applies again if for the electron wave a WKB approxi-
mation holds [8].

On the other hand, valuable contributions to the kinet-
ic aspect of high amplitude Langmuir waves have been
given by extensive particle-in-cell (PIC) simulations of
resonance absorption [9—12]. They undoubtedly revealed
that a fraction of the electrons are trapped and accelerat-
ed to high velocities in the wave potential (hot electrons)
thereby effectively damping the wave. In more recent
PIC simulations the calculations were extended to
extremely-high-density gradients and again, fast electron
generation was found [13,14]. Meanwhile the scientific
community became acquainted with the concept of wave
breaking, but its meaning in kinetic theory and its rela-
tion to the fluid picture remained completely obscure till
now. So far only two authors seem to have been fully
aware of this situation [15]. In other works, tentative and
vague characterizations of kinetic wave breaking were
only given occasionally [9,16]. Thus two questions arise:
(i) what is a meaningful definition of wave breaking in the
kinetic theory, and (ii) what is the appropriate breaking
criterion if kinetic effects are taken into account?

II. VLASOV SIMULATIONS

We recognized that both answers cannot be given by
PIC calculations, owing to large noise and poor statistics,
and decided therefore to solve the Vlasov-Poisson system
of equations,
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with the help of a splitting scheme [8,17]. To answer
both questions it is sufficient to treat the ions (density
ny/Z) as a fixed neutralizing background of inhomo-
geneity length L =n,/d,n,. L is chosen as a free param-
eter. Our presentation is organized as follows. First we
present numerical solutions of system (3) of equations in
dependence on the driving laser field and discuss how
they relate to the Coffey criterion. Then a definition of
wave breaking is given and its occurrence is proved. Fi-
nally an analytic breaking criterion is derived, and the
meaning of the Coffey limit in presence of electron trap-
ping in a homogeneous warm plasma is shortly discussed.

We use the capacitor model of resonance absorption
[8,18,19], which conists of representing the light wave by
the oscillating field E, =E sinw? parallel to the density
gradient of a layered plasma. This model allow both for
an analytic treatment of hydrodynamic equations and for
reducing the computational demand of the Vlasov simu-
lations to a practicable amount, and it captures the essen-
tial aspects of resonance absorption [18,19]. In the fol-
lowing the normalized driver strength 7 is used:
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Initially a Maxwellian distribution

fo=(2m) " 2exp(—x /L)exp( -~u2/2vt211 )

is assumed (v, =s,/V'y). Figure 1 shows the evolution

of f in terms of contour lines f =const after 20, 25, and
40 periods for L =300Ap, and 7=0.04 with the thermal
field E; =kT,/eA, and Debye length at resonance
Ap=vy/w. After a much higher number of cycles f
looks very similar and does not show any new aspects,
thus indicating that a quasistationary state is reached at
the times considered here. Short reflection may convince
the reader that closed loops in the contour plots refer to
trapped particles. The contour lines extending to high
velocities and leaning to the right are to be assigned to
accelerated and detrapped particles. They are modulated
by the periodic wave potential and their inclination in-
creases as is characteristic for free streaming particles.
The electron density is plotted in Fig. 2. The dashed
smooth curve is the Coffey limit. Owing to strong non-
linear damping the Langmuir wave never reaches this
limit, except for the first maximum, even at much higher
driver strengths 7. This behavior is confirmed for three
other L values also in Fig. 2. To the first (resonant) den-
sity maximum the Coffey criterion does not apply. For
instance, in picture (a) it is clearly higher than the Coffey
limit, but there is no indication of breaking [see also the
first smooth and regular maximum in Figs. 3(a) and 3(b)].
For 7>0.04 all maxima of n, except the first one do not
increase further, but the wave remains periodic and
smooth. As a first result, we can clearly see that although
fast electrons are generated by trapping, the wave is still
regular and periodic in the sense mentioned above. In
conclusion, fast electron generation is not indicating
wave breaking.

However, above a certain threshold »* the distribution
function undergoes a qualitative change: the Langmuir
wave becomes irregular; it breaks, as illustrated by Fig. 3
for n, and E at =0.2 in a density profile of scale length
L =300A,. Inspection of the corresponding evolution of
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FIG. 1. Distribution function evolving from the initial distribution f(x,v)=(27) " !"?exp(—x /L)exp(—v?/2v%,) with L =300,
and 7=0.04 after (a) 20, (b) 25, and (c) 40 periods; (d) enlarged plot of area indicated in (c) after 50 periods. The contour lines refer to
f=1071,1072 1073, and 10™% the critical density with o, = is located at x =0. Trapped electrons form closed loops (d); the ve-
locity modulation of the detrapped electrons is due to the periodic electric field of the Langmuir wave.
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FIG. 2. Resonantly excited electron plasma waves in ion den-
sity profiles with different scale lengths L. Electron density n,
and breaking limit after Coffey (dashed curves); out of reso-
nance this limit is never reached owing to nonlinear Landau
damping. (a) n=0.06, ot=120m; (b) 7=0.06, wt=80w; (c)
7n=0.08, ot =1007; (d) n=0.1, wt =707

the distribution function (cf. Fig. 4) reveals the reason for
such behavior. The mean oscillatory velocity in the reso-
nance region becomes so large that trapping of whole
bunches of rather slow electrons occurs. These bunches
of coherently moving and partly coalescing electrons
remain trapped at least for several wavelengths, thus
creating an additional aperiodic macroscopic electric
field. From a fluid point of view the phenomenon is simi-
lar to what is called intense mixing of volume elements
exhibiting different oscillation phases. (A Grassberger-
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FIG. 3. Langmuir wave excited by driver of strength n=0.2
in a plasma of scale length L =300Ap: the irregular shape indi-
cates breaking. (a) Electron density n,; (b) electric field E as a
function of space; dashed curve, Coffey limit.
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Procaccia analysis of the electric field and the electron
density at fixed x reveals the transition from a quasi-
periodic attractor to a chaotic one [8].) The electrons in
these bunches contribute to the heat conduction, so that
the heat flux g increases suddenly with wave breaking.
For example, at x =50\, we obtain

n q (a.u.)
0.06 0.31
0.09 0.32
0.12 0.49

As a consequence, the following definition can be
given: Wave breaking is the loss of periodicity in at least
one of the macroscopically observable quantities. This
definition extends on both hydrodynamic as well as kinet-
ic descriptions. In contrast to a linear wave where an ir-
regularity occurs in all variables simultaneously, breaking
may appear to a different degree in the various quantities
(e.g., n, and E in Fig. 3). The first resonant density max-
imum may either satisfy Coffey’s inequality or exceed this
limit, even when the wave does not break (cf. Figs. 2 and
3). At this point we wish to point out for clarity that, as
stated in the introduction, Coffey’s criterion Eq. (1) was
originally derived for the water-bag model and only later
on has it become customary to use the same criterion for
any kind of warm plasma without or with a hot-electron
component present.

Starting from the breaking condition for the streaming
cold plasma, we replace the streaming velocity by the
group velocity of the plasma wave, because the latter is
the speed of energy transport now (at least approximately
in a nonlinear wave). From the fluid theory of resonance
absorption [19] we obtain for the group velocity at the
end of the resonance zone vs=sez/v<pz2(L /Ap) Vv,
Inserting this into Eq. (2) at the place of v, yields

n>n*=0.72(L /Ap) "' . 4)

This breaking threshold is in very good agreement with
the results of the Vlasov simulations, which are displayed
in Fig. 5. The reason for the validity of inequality (4) at
finite electron temperature is that in the resonance region
the electronic oscillatory motion v, is mainly determined
by the total electric field E=E,+E,,,., and is only
slightly affected by the much smaller force due to the
electron pressure gradient [3].

Next, the threshold intensity for wave breaking is cal-
culated. Making use of the scaling L /Ap~I; /% from
Ref. [11], where I; is the vacuum laser intensity, Eq. (3)
translates into 7} =2X10'> W/cm? for the Nd laser if a
degree of absorption of 25% is assumed.

Finally we mention that our kinetic analysis of wave
breaking of freely running Langmuir waves in a homo-
geneous plasma shows that the same phenomenon occurs
here too, that the reason for breaking is again trapping
of entire bunches of electrons. However, the limit at
which the wave breaks is much higher than the Coffey
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FIG. 4. Route to wave breaking. The distri-

bution function for L =300A, and 7=0.2 (cf.

Fig. 3) after (a) 21, (b) 21.5, (c) 22.5, and (d) 23
périods. Contour lines for f=10"!, 1072
1073, and 10™*. Trapping and coalescence of
entire electron bunches is evident (see black
colored areas).
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criterion would indicate. A detailed analysis of this case
is under preparation.

III. CONCLUSION

We conclude that wave breaking is a phenomenon on
its own, to be distinguished from trapping of more or less
uncorrelated electrons. The definition of wave breaking
we have presented here has a clear meaning and is appli-
cable to a kinematic description, too. We have further
shown that a criterion for wave breaking in smooth ion
density profiles can be deduced from the model of a cold
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FIG. 5. Driver strength threshold n* for wave breaking as a
function of scale length L. Straight line: Eq. (3). The circles in
the 7— L plane represent Vlasov simulations with wave break-
ing (solid) or without wave breaking (blank).
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streaming plasma. This suggests that coherence in the
resonant wave persists until the hydrodynamic descrip-
tion leads to inconsistent multivalued density and flow
distributions in the resonance region. Beyond the break-
ing limit given by Egs. (2) and (4) one has to rely on a ki-
netic analysis which shows that although breaking, i.e.,
phasing mixing, originates from resonance, its existence
becomes manifest only downstream as a lack of wave
coherence. Furthermore, it has become clear that
Coffey’s criterion should be applied with care; in general,
it is not applicable to resonance absorption.

Wave breaking will lead to an increased plasma fluc-
tuation level, spectral broadening of reflected laser light,
temporal pulsations, and possibly to lower saturation lev-
els of stimulated Raman and Brillouin scattering. As an
interesting by-product of the calculations presented here
we have observed that the absorption rate can be ob-
tained from the linear theory of resonance absorption for
laser intensities up to at least 200 times higher than one
would deduce from simple standard criteria. A further
refinement of our treatment would be the self-consistent
determination of L and the inspection of caviton and soli-
ton formation. However, in view of the present under-
standing of wave breaking it is perfectly justified not to
take ion motion into account. (i) The results in flat densi-
ty profiles presented here are new and interesting. (ii)
The case of a stationary smooth profile (no holes, no radi-
ation trapping) is generally assumed to occur in experi-
ments with clean smooth laser pulses. In fact, with such
pulses initial irregularities are washed out soon; ablation
has this effect, as hydrosimulations clearly show. (iii) It
would be interesting to understand unsteady profiles
(fluctuating, or ripples, etc.). Such calculations are
planned for the future.
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